Compositional Analysis

We provide accurate identification of sample makeup or chemical composition, be it in bulk or small in quantity.

Compositional Analysis

We provide accurate identification of sample makeup or chemical composition, be it in bulk or small in quantity.

© Ian Valiente Photography

Actual Images & Data of Analysis

FTIR is a very versatile tool for the structure identification of organic and some inorganic compounds. It is very simple and convenient to use as well as very affordable. FTIR Spectroscopy is a technique based on the vibrations of the atoms in a molecule. Every compound exhibits unique or characteristic vibrations which differentiate them from other similar compounds. Some applications of FTIR Spectroscopy include, but are not limited to, the following:

Microplastic Sample from Compound Microscope with Measurement
A. Image of Microplastic Sample from Compound Microscope 
with Measurement
Image of Microplastic sample from FTIR Microscope
B. Image of Microplastic sample from FTIR Microscope
Test results were obtained using Perkin Elmer FTIR Spectrometer Frontier and Spotlight 100 Microscope with the following parameters:
ADMATEL FTIR Test Parameters
Baseline correction was applied to the spectrum to improve its quality without distorting the band intensities in the final spectrum.
It is very useful for the identification of microscopic organic contaminants.

Organic contaminants include the presence of chemically active compounds that causes adverse effects to the environment. Among these chemically active compounds are microplastics which are tiny plastic particles up to 5 mm in diameter. Shown in Image A is a polyethylene microplastic that has a diameter of 0.19 mm. IR microscopy is a very useful tool in elucidating the structure and composition of microplastics that are not seen readily by the naked eye.

Table 1: Peak assignments in the infrared spectrum of plastic sample

Table 1 shows the frequencies of the particle in comparison to the standard. Figure 1 shows the interpretation of the spectra thru its structure/compound type and its vibrational modes.

Spectra of microplastic
Figure 1: Results of Analysis
It is a very useful tool for the identification/characterization of organic-based materials and some inorganic compounds.
ADMATEL FTIR Spectrum of Aramid Sample
Figure 2: FTIR spectrum of Aramid Material

The identification of the structure of organic compounds is a very important feature of IR spectroscopy. Being able to know the chemical structure or the identity of an organic compound gives an insight into the final properties of a particular material. An example is the Aramid fiber which consists of rigid polymer chains with linked benzene arrays and amide bonds. The structure of Aramid fiber is shown in Figure 2, which justifies their high strength, excellent resistance to abrasion, and organic solvents as well as fire. Furthermore, the FTIR spectrum (Figure 2) revealed the characteristic vibrations related to the benzene group, such as the aromatic C-H stretching, C-H bending vibrations, and C=C stretching. Moreover, the characteristic vibrations attributed to the amide bonds such as the carbonyl group (C=O) stretching and C-N stretching were also shown.

It can also identify whether a chemical change has occurred in a particular material.

The chemical structure of compounds dictates their final properties and how they behave. Any slight changes or modifications in their structures can significantly alter their properties resulting in either desirable or undesirable results. The alkaline treatment of lignocellulosic fiber causes the removal of non-cellulosic components such as lignin which results in the modification of its structure. The removal of the non-cellulosic components increases the fiber’s density, which may result in enhanced mechanical properties of the resulting material. From Figure 3, it can be seen that the absence of the peak at around 1732.47 cm-1 in the alkali-treated fiber spectrum reveals that certain fiber components were removed upon treatment.

Occurrence or loss of peak reveals the chemical change in a compound

FTIR Spectra of raw and alkaline-treated Lignocellulosic fiber
Figure 3: FTIR Spectra of raw and alkaline-treated Lignocellulosic fiber

Get Free Technical Consultation

ADMATEL is open to serve you Monday-Friday, 8am-5pm. 
Call us at  (02) 8837-0461 or send us an email at services@admatel.com

Get Free Technical Consultation

We are open Monday-Friday, 8am-5pm. Call us at  (02) 8837-0461 or send us an email at services@admatel.com